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Abstract—In complex digital business ecosystems like MU-
SIC360, practitioners develop various requirement perspectives
concurrently and independently due to time constraints and time-
to-market considerations, but by doing so also create alignment
issues between these perspectives. We argue that a knowledge
graph-based approach enables systematic analysis and reasoning
about traceability between these perspectives: in our case, the
business value model of the ecosystem, associated data models,
and security requirement items. In the knowledge graph, the
elements of the business value model (e.g., economic actors),
data elements (e.g., data assets), and security requirement item
elements (e.g. access controls) are nodes connected by edges rep-
resenting semantic/logic relationships (e.g., protects, authorizes).
We illustrate the use of the traceability knowledge graph using
the EU MUSIC360 project. The resulting traceability knowledge
graph allows us to identify the perspectives’ incompleteness and
inconsistency, analyze the causes, and derive suggestions for
improving model and requirements quality while using concur-
rent engineering. Theoretically, we contribute a cross-perspective
traceability framework that unifies value-oriented, data-oriented,
and security-oriented requirement-related artefacts into a single
semantic network, plus reusable traceability patterns and rules to
guide early-phase alignment. Practically, we show how to embed
traceability analysis into concurrent engineering to improve
requirement quality without sacrificing speed.

Index Terms—Traceability, Security requirement, Knowledge
graph, Concurrent software engineering, Music digital ecosystem.

I. INTRODUCTION

Often, a complex software platform has to be developed in a
relatively short time frame, e.g., due to a short time-to-market
requirement. In our situation, namely the Horizon Europe
project MUSIC360, the strict release planning is imposed by
the funding agency, but also by ourselves. The MUSIC360
project develops a digital business ecosystem (DBE) and
supporting software platform to better understand the value of
music, and the related intellectual property rights on music.
A DBE is a system of economic actors that depend on each
other for their economic well-being and survival [1]. The
MUSIC360 software platform is inherently complex because
of the multiple stakeholders involved and the intricate music
intellectual property right management itself. The aim of the
platform is to collect data from users of music (which music
is played where) and Collective Management Organizations
(CMOs), and to show the results to the rightholders, music
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users, and policymakers at different levels of aggregation.
CMOs represent the rightholders, such as performers and
authors, and divide the collected money from the professional
users of music, such as bars, shops, and radio stations.

To enable reflective learning, the project uses a staged
delivery process. The first year is used to develop an initial
prototype of the Music360 platform, which can be evaluated
by the stakeholders, and the remaining time of the project is
used to develop a second, improved version of the software.
It means that the requirements must also be elicited in the
first year. How do we collect these requirements for such a
complex system in a relatively short timeframe?

To do so, we choose concurrent software engineering [2],
which utilizes the idea that development tasks, and in our
case, requirements engineering tasks, can be performed in
parallel rather than sequentially. We apply this to requirements
engineering in the sense that we develop different requirement
viewpoints [3] at the same time. Our viewpoints are organized
by topic and stakeholder concern: (1) the business model
of the MUSIC360 ecosystem (who are the actors, and what
are they exchanging with each other of economic value), (2)
what data is collected, aggregated and presented, and (3) what
are the requirements with respect to security. These three
viewpoints are developed relatively independently of each
other. There are a few synchronization points in time, where
information about the viewpoints under design are exchanged,
but the viewpoints are mainly developed in parallel. While
this strategy accelerates development, it introduces traceability
and consistency challenges also: artefact elements may be
inconsistently defined in relation to the other viewpoints,
incompletely linked, or redundantly specified.

The topic and contribution of this paper is to understand
whether concurrent software/requirement engineering is a re-
alistic option, e.g., to achieve a faster time-to-market. To do
so, we analyze the found requirements for traceability, from
different dimensions (e.g., completeness, consistency). We do
so by creating knowledge graphs, linking the elements of
requirements found in the various viewpoints.

This paper is structured as follows. In Sec.II we review
related work on concurrent software/requirements engineering
and traceability methods, and highlighting gaps in linking
different artefacts. Sec.III presents our research design. In
Sec.IV we introduce the MUSIC360 project and describe



the constructed viewpoints, namely the business value model,
data model, and security requirement items. Sec.V details the
knowledge-graph construction design, including node cate-
gories and typed relationships, and explains how artefact ele-
ments are instantiated. In Sec.VI we show how the KG-based
approach works for traceability analysis for the requirements
viewpoints as constructed by the MUSIC360 project. Finally,
Sec.VII discusses possible solutions for traceability issues and
the overall effectiveness of concurrent software/requirement
engineering. Sec.VIII summarizes our work and contributions.

II. RELATED WORK

A. Conceptual Modeling and Security Alignment in DBEs

The notion of Digital Business Ecosystem (DBE) supposes a
digital platform as the core and proposes a novel collaborative
approach that leverages resources across multiple players and
industries to meet the complex needs of diverse stakeholders
[4]–[6]. Some research in DBEs [7] has emphasized the need
for conceptual models that reflect the complexity of value
co-creation, multi-actor governance, and platform-mediated
interactions. Models such as UML data models, e3value
models [8], and value network maps [9] have been used to
represent economic and data flows. However, these models
are often used in isolation or only for business analysis,
without being integrated with system-level concerns such as
security. Because of collaboration and resource sharing across
diverse participants in DBEs, this always leads to complex
security challenges. Traditional security requirement engineer-
ing (SRE) approaches, such as KAOS, i* [10], misuse and
abuse cases [11], [12], or CORAS and OCTAVE [13] provide
valuable mechanisms to capture adversarial behaviors and
protection needs while ignoring business-oriented perspectives
such as data utility or value creation. In DBEs, where stake-
holders interact through shared data and cross-organizational
value flows, these traditional methods may overlook security
concerns that stem from economic motivation or value ex-
changes.

Often, there is a disconnect between what is modeled as
valuable or sensitive in the ecosystem and what is protected
at the implementation level [14]. Most contributions still focus
on conceptual alignment at the level of isolation goal or risk
modeling, rather than formalizing the traceability relations
between different perspective artefacts such as data models
(DM), value models (VM), and security requirement items
(SRs). While evaluating traceability and consistency between
requirement viewpoints, we build upon these insights and
extend them by explicitly tracing relationships from elements
of the e3value model (VM) and UML class data model (DM)
to relevant Security Requirement items (SRs) using seman-
tically typed links within a knowledge graph. This enables
deeper analysis of how specific value-oriented or data-sensitive
concepts are governed by particular security controls, support
both validation and iterative refinement of the models and SRs
involved.

B. Traceability in Concurrent Software & Requirement Engi-
neering

Concurrent Software & Requirements Engineering (CSRE)
emphasizes the parallelization of software and requirement
development phases to accelerate delivery while managing
interdependencies across distributed teams [2]. The dynamic
nature of CSRE introduces challenges in maintaining trace-
ability across rapidly evolving artefacts such as requirements
and requirement-perspective models [15]–[18]. Traceability,
defined as the ability to track relationships between develop-
ment artefacts throughout the software lifecycle [19], becomes
critical in CSRE to ensure that DBE design and security
requirements are complete and comprehensive. For instance,
[20] highlights that incomplete trace links in agile CSRE
workflows often lead to security gaps, as teams prioritize fea-
ture velocity over documenting requirement-to-code mappings.
To address this problem, many studies are investigating the
improvement of integrated tool infrastructure for supporting
the traceability analysis in complex systems [21]–[23]. For
example, TRACEM [24] uses a metamodel to represent trace
information standardly and integrates static and dynamic anal-
ysis techniques during the reverse engineering process. Hence,
conceptual modeling not only helps in visualizing complex
interdependencies [25] but also acts as a supplement or cross-
validation method for CSRE when integrated with traceability
analysis.

C. Knowledge Graphs in traceability

A knowledge graph (KG) is a structured semantic network
that represents entities (nodes) and their relationships (edges)
with formal semantics, enabling efficient data integration,
reasoning, and querying across heterogeneous sources [26].
Compared to traditional traceability matrices [27], which often
suffer from scalability issues and lack semantic reasoning
capabilities, knowledge graphs offer a flexible, ontology-like
structure that can unify heterogeneous artefacts while preserv-
ing their semantics. This is particularly beneficial in concurrent
software engineering, where artefacts evolve in parallel and
semantic misalignments are common [28].

KGs are increasingly applied to address challenges in intelli-
gent code recommendation or vulnerability detection for map-
ping dependencies between requirements, design components,
and security controls. For instance, [29] conducted a system-
atic literature review highlighting KG’s role in automating
code generation, bug localization, and API recommendations
by linking code artefacts with contextual metadata. Some
recent research [28], [30], [31] investigated conceptual models
in industry and applied KG to achieve data fusion, deep
correlation analysis, or risk identification among data. These
achievements are more focused on problem identification and
solving in the late stages of software development.

Existing KG-applied research in the early stages of software
engineering is limited and often lacks adaptability to DBEs
where value flows or data elements and security constraints are
tightly connected. Traditional approaches, such as traceability



matrices, struggle with scalability and fail to present com-
plex relationships in a multi-stakeholder, multi-business sce-
nario project [32]. Semantic discrepancies between business-
oriented value models and technical security requirements
usually hinder effective mapping [33]. However, KG’s fea-
tures, which are usually constructed on element types, make
it ideal for illustrating the relationships between conceptual
models and security requirement items. Query-supporting and
reasoning abilities of KG can also contribute to more efficient
traceability analysis of these artefacts.

III. RESEARCH METHODOLOGY

We are interested in understanding whether concurrent soft-
ware & requirements engineering is effective, specifically if
multiple requirement viewpoints are developed in parallel. We
followed a four-phase research approach depicted in Fig. 1: (1)
problem investigation, (2) artefact development, (3) Traceabil-
ity abalysis by KG-based approach, and (4) evaluation of effec-
tiveness. The method emphasizes lightweight synchronization
and post-hoc semantic alignment using a knowledge graph
(KG) to expose inconsistencies and incompleteness across
viewpoints.

Fig. 1. Research design cycle

A. Research approach

• Phase 1: problem investigation. Concurrent software &
requirements engineering develops multiple requirement
viewpoints at the same time with the goal to speed-up
the development process. While doing so, inconsistencies
between requirements may emerge, and also requirements
in one viewpoint may be incomplete when considering
the other viewpoints. The question is whether concurrent
software & requirements engineering is still effective, in
relation to the reduced lead time of the project.

• Phase 2: Artefact development. We construct several
artefacts concurrently. Three partially overlapping sub-
teams independently developed: (1) an e3value model
capturing actors and value exchanges; (2) a UML class
model specifying data entities, relationships, and sensi-
tive attributes required by the platform; (3) a security
requirements document comprising 27 items covering
confidentiality, integrity, access control, and transparency.
As good as possible, the security requirements refer-
ence data assets derived from the data model. Iterative

workshops enable progressive refinement and validation
of each artefact individually against emergent insights.
Consequently, the development of the three requirement
viewpoints did not happen completely in isolation, as
would be the case for any industry-strength project.

• Phase 3: Traceability analysis by KG-based ap-
proach. Afterwards, we formalize artefact interrelation-
ships within a knowledge graph (KG). We instantiate
KG node types (e.g., value transactions, data assets, and
security requirements items), and define semantic/logic
edge classes (e.g., tracedFrom VT, tracedFrom DA) and
corresponding class types (e.g., protects, supports). This
graph-based representation facilitates declarative queries
(e.g., “What data elements or value elements are pro-
tected by the specified security requirements?”) and pos-
sible automated reasoning to reveal latent dependencies.
By encoding artefacts’ elements in a unified KG, we
transform hard-to-identify interrelationships into rigorous
trace links and even construct a semantic network for easy
consistency and completeness analysis of the viewpoints
involved

• Phase 4: Evaluation of effectiveness. The concurrent
software & requirements engineering approach is eval-
uated for effectiveness by considering traceability prob-
lems (e.g., incompleteness, inconsistency). Queries and
manual inspection to verify that each critical model ele-
ment was linked to the appropriate security requirements.
This analysis identifies missing or ambiguous connections
(e.g., data entities with no associated security requirement
or value flows lacking clear enforcement).

B. Project management

Development of the first-cycle artefacts began in early 2023
under a staged delivery plan, with iterative workshops during
2023–2024 to refine the e3value model, UML class model,
and the 27 SR items. These artefacts evolved in parallel with
a small number of synchronization checkpoints, consistent
with the project’s time-to-market constraints. Key modeling
decisions and interim snapshots were recorded to support
subsequent KG mapping and adjudication of trace conflicts.

IV. CASE STUDY: MUSIC360 DIGITAL ECOSYSTEM

A. Case context & problem investigation

The MUSIC360 ecosystem is an example of the digital
business ecosystem, which aims at providing insights into the
value of music to creatives (music performers and authors),
venues (restaurants, retail shops, offices), and policymakers
(EU officials, national authorities and lobbyists). The Mu-
sic360 ecosystem provides data about the value of music,
where ‘value’ can have an economic, societal, or cultural
connotation. To do so, MUSIC360 collects data about the
music used in venues (e.g., by installing music finger-printing
devices in venues to discover what is actually played), effects
of music played (for example increased revenue), and metadata
of music such as rightsholders’ (performers and authors)
information, music work (including recordings), and earnings



Fig. 2. E3value model for the MUSIC360 platform

by rightsholders. Important stakeholders in this DBE are the
collective Management Organizations (CMOs). They collect
money from venues in return for a license to play music and
pay the money subsequently (minus an administrative fee) to
the rightholders.

Due to time constraints, we adopted a CSRE approach
to expedite this process. In parallel, we developed the busi-
ness value model (VM), data model (DM), and security
requirement items (SRs) to some extent for capturing business
processes, data structures, and security controls. However, this
method may introduce potential deficiencies, such as delays
in requirement updates and inconsistencies between models.
Consequently, a thorough subsequent traceability analysis is
necessary to continuously refine and optimize the mappings
and relationships between VM, DM, and SRs.

We illustrate phase 2 (artefacts development) from our
research design cycle in this section.

B. MUSIC360 e3value model

An e3value model is meant to understand the actors in-
volved in an ecosystem, and what value they exchange with
each other. We elicit and design a value model based on the
e3value modeling language [34]. For this case, we follow a
normal elicitation process for e3value models, as explained
in [8]. For reasons of brevity, we immediately present it in
Fig. 2. In the current MUSIC360 revenue model, the economic
actor/market segment is presented in 6 types: EA1 - Venues,
EA2 - CMO members, EA3 - Collecting CMOs, EA4 -

Music platform provider, EA5 - Audio recognition com-
panies and EA6 - Branding companies. We also numbered
the transaction paths in the revenue model and explained the
revenue scenarios for these paths below.

1) VT1: Venues pay licence fees to play background music.
2) VT2: Some CMOs use fingerprinting devices provided

by audio recognition companies.
Revenue model: The audio recognition companies
(ARC) use devices and other technologies to collect
audio data and create a list of tracks played. It provides
read access to this data to some stakeholders (venue or
CMO) according to the contract.

3) VT3: CMOs pay a fee to the M360 platform to get
access to track and playlist data from different CMOs,
integrated by the platform.
Revenue model 1: CMOs pay a flat yearly subscription
fee to get unlimited access. The fee could be propor-
tional to the number of artists registered with the CMO.
Revenue model 2: Each CMO pays a base fee to get
access and a small amount for each usage of the data,
i.e., for every query.
Whatever the revenue model, subscription just provides
access to the data of other CMOs but does not change
ownership. Access permissions, on the other hand, may
depend on the type of subscription.

4) VT4: A CMO with a subscription can access track data,
playlist data, and the work-recording relation established
by M360 (after CMO members accessed the platform for



the first time and connected their IPI and IPN).
5) VT5: If a CMO subscribes, all of its members are

subscribed. They pay for this in an implicit transaction:
the subscription fee of the CMO is paid by members by
deducting it from the earnings they receive.

6) VT6: A CMO member that has an M360 subscription
can access data about their own tracks and playlists in
which they occur, integrated across CMOs.

7) VT7: Venues or branding companies who want experi-
ments to measure the background music impact, can pay
an audio subscription company to track venue play data,
use the M360 platform to store it, and get support for
value analysis. During the experiment, measured track
data is owned by the venue or branding company. After
the experiment is finished, the audio recording device
can be reused by another venue or a CMO, if they
acquire the service of track and playlist data from the
audio recognition company.

8) VT8: Other stakeholders can get aggregate information
about background music.
Revenue model: This can be a freemium model. M360
publishes an abbreviated free report yearly. If a stake-
holder wants more, it has to pay. CMOs who have
a subscription get this data without additional cost.
Academic researchers may get it at a lower price.

C. MUSIC360 data model (UML class model)

Understanding the structure of the data itself (for MU-
SIC360, we do not use unstructured data) usually plays a
crucial role in the software engineering process. We executed a
data modeling task using standard UML class modeling. This
effort takes several workshops for identify key data entities
and their relationships, and results in a data model in Fig. 3.

For reasons of brevity, we explain the most important
data elements. Rightholders (e.g., neighbouringRightholder
or authorRightholder) have claims on a creation (either a
recording or a work). Rightholders can transfer their claims to
a beneficiary and can use an agent to represent them. Collec-
tive management organizations (CMOs) collect compensation
for usage of claimed intellectual property rights by venues.
CMOs have a mandate for recordings that are played, usually
as part of a performedplaylist by venues (chains, restaurants,
etc.). These venues have a license to do this, which they obtain
from a CMO. Plays are monitored by a company called the
monitor, doing identification of the played recording of work.
One or more plays of a recording or work result in earnings,
via a claim, for the rightsholder. In the following traceability
analysis, for simplification, we will focus on valuable data
elements and classify them.

D. MUSIC360 security requirement items

We elicit the (data) security requirement items (SRs) in
several workshops using the following steps:

• Stakeholder identification. Stakeholders can be identi-
fied based on the project statement, which can be listed as

CMO members (rightsholders, beneficiaries, and agents),
CMOs, policymakers, third parties, and venues.

• Security goal refinement & Asset identification. We
conduct a series of interviews and semi-structured work-
shops with the identified stakeholders to derive their
security concerns based on the general goals and busi-
ness needs of our project. We explore specific scenarios
where security threats might arise, such as data breaches,
unauthorized access, and denial-of-service attacks. The
security goal and critical assets will be refined and
identified. During this process, the data model acts as
a reference of assets.

• Security requirement items. We identify SRs based
on the security goal refinement, identified assets, and
possible threats. They can be specified into access control
requirements, encryption requirements, and requirements
for secure data transmission. Also, requirements for
compliance with GDPR and other relevant privacy laws
need to be included. In practice, we listed 27 security
requirement items covering confidentiality, integrity, and
authentication, part of the SRs is shown in Table I.

V. KNOWLEDGE GRAPH CONSTRUCTION

Since CSRE was utilized in the early stages of this project,
different artefacts, such as VM, DM, and SRs, were developed
almost independently and simultaneously by different practi-
tioners, which easily leads to consistency and completeness
issues between artefacts. In order to systematically evaluate the
consistency and completeness of these artefacts, we construct
a knowledge graph (KG) to perform traceability analysis. This
approach has the following advantages:

• Strong relationship expression: A KG can express rela-
tionships between elements in multiple artefacts as nodes
and edges, which, on a meta-level, are the constructs used
in the VM, DM and SRs.

• Convenient for reasoning and analysis: Through se-
mantic relationship graph modeling, rule definition, and
graph analysis, using software tooling such as Neo4j,
queries on the KG can be defined that identify missing
traces, potential conflicting relationships, etc 1.

• Supports formal verification: The KG can be used to
verify and explain the completeness and consistency of
the viewpoints.

The whole KG-based traceability analysis approach can be
divided into 4 steps: (1) Node & edge class design of KG, (2)
KG node instantiation, (3) traceability mapping (semantic
KG edge), and (4) traceability problem identification. The
different node classes that are subject to traceability analysis
are concisely presented in Table II, whereas the edge classes
can be found in Table III. These tables reflect the most impor-
tant elements that are elicited in each requirement viewpoint,
as well as the possible kinds of relationships between them.

Based on designed classes, we identified and labeled the
important information (elements) in different MUSIC360 arte-

1https://neo4j.com/



Fig. 3. The MUSIC360 UML data model: classes Venue, CMO, Claim, Earning, etc., with attributes (e.g. Venue.name, Earning.amount) and associations.

Index Description

SR 2 Data providers OUGHT to make data in their custody, but owned by other parties, available to the ecosystem, within the reasonable
scope of the project’s data accessibility requirements.

SR 5 CMOs MUST provide means for the following user groups to manage their data: creatives (e.g., artists), venues and policymakers.
SR 7 Data owner(s) MUST be empowered to grant data access to requesting third parties within the ecosystem.
SR 11 Access or revocation of data to and from the various parties of the ecosystem MUST be done in a timely and consistent manner.
SR 17 Ecosystem database(s), notably, but not limited to, described in D2.1 MUST be encrypted using cryptographically secure symmetric

or asymmetric algorithms with sufficient collision entropy for the lifespan of the ecosystem; e.g., in the case that at year “n” RSA2048
is not predicted to provide sufficient collision resistance, RSA3072 must be phased in at year “n - (some reasonable time period)”.

TABLE I
(DATA) SECURITY REQUIREMENTS ITEMS (PARTLY AS AN EXAMPLE)

facts as KG nodes systematically. Table IV shows some exam-
ples of instantiated nodes we have for KG-based traceability
analysis.

VI. TRACEABILITY ANALYSIS

The remaining two steps in the KG-based traceability
analysis approach are: (3) traceability mapping (semantic
KG edge), and (4) traceability problem identification. We
illustrate how we construct the traceability KG of between the
VM and SRs perspectives and the DM and SRs viewpoints.
We evaluate whether each element node in the VM and DM
can be traced and linked to the SRs nodes in the graph.

A. Traceability mapping between VM and SRs

We now build a knowledge graph (KG) for traceability
analysis between the VM and SRs. First, each VM element
(economic actor, value transaction) (following the process we
present in Sec.V) becomes a node. Traceability between VM
and SRs nodes are expressed by semantic/logic relationships.
One example of such a relationship between the VM and SRS
on SRS 5 (see Table I) node is shown in Fig. 4, the problem
detected here is ‘Policymakers in SR 5 has not been traced in
VM, it should be a missing economic actor’.

Second, depending on the semantic relationships between
the VM and the SRs, traceability problems are found. To
simplify, we show our final findings as a summary in Table



Node class Origin Description

Value Transaction VM A value exchange behavior.
Economic Actor VM Stakeholders involved in value transactions,

e.g., Venue, CMO.
Data Asset DM Data info that needs to be protected.
Data Record DM Logical data entities, e.g., tables, records.
Data Owner/User DM Data owner or data user, e.g, rightholders,

CMO, Venue.
Security Req. SRs Clearly described security requirements.

TABLE II
NODE CLASS DESIGN IN KG

V.

Fig. 4. Examples: node SR 5 traceability mapping in VM-SRs KG

B. Traceability mapping between DM and SRs

We do the same exercise, but now for the DM and SRs
viewpoints. An example of a traceability relationship between
the DM and SRs on SR 5 node is shown in Fig. 5. The
problem detected here is: (1) Creatives (e.g., artists) are
expressed as rightsholder in DM, resulting in an alignment
problem in tracing. (2) The word ‘Data’ in SRs is not specified
as ‘claim’, resulting in incompleteness in tracing. Using the
semantic relationships between the DM and the SRs, we found
all the traceability problems. To simplify, we just summarize
our findings in Table V.

Fig. 5. Examples: node SR 5 traceability mapping in DM-SRs KG

C. Traceability problem statistics result of MUSIC360

We define four traceability problem types and defined the
corresponding severity score criteria of these problems for
further analysis. The average severity was scored on a three-
level scale (1 = low, 2 = moderate, 3 = high) based on the

expected impact of each issue on the correctness, security, or
completeness of the MUSIC360 platform:

• AD1: Trace consistency. Are the associations between
different artefacts logically consistent (any contradictions
or conflicts)?
Severity score scale: Inconsistencies are rated by severity:
minor semantic divergence (score 1), partial contradiction
or unclear logic (score 2), and direct logical conflict
between artefacts (score 3).

• AD2: Trace completeness. Are all SR items related to
all involved VM or DM elements?
Severity score scale: Missing links are assessed by their
impact: non-critical omissions (score 1), gaps involving
moderately important elements (score 2), or missing
traceability to critical data or value elements (score 3).

• AD3: Trace redundancy. Do multiple SR items relate
to the same VM/DM elements while having duplications
of semantics/logic?
Severity score scale: Redundancy is scored based on
redundancy level: mild phrasing duplication (score 1),
overlapping but unnecessary requirements (score 2), or
semantically equivalent SRS items leading to mainte-
nance risks (score 3).

• AD4: SRs missing. Are there any DM or VM elements
not traced by any SRs (any overlooked risk points)?
Severity score scale: Severity reflects the potential risk of
the untraced element: low-impact components (score 1),
functionally relevant but non-sensitive elements (score 2),
and critical assets or value flows lacking any protection
(score 3).

According to the KG graph-based automatic detection and
manually verified traceability mappings, we summarize the
traceability problems statistics results across VM–SRs and
DM–SRs in Table V for simplification. The percentage shown
in the table is calculated as the ratio of problem trace rela-
tionships to the total expected links (existing correct links +
problem links).

Notably, VM–SRs exhibits a higher level of incompleteness
(12.7%) and missing SRs links (11.5%) compared to DM–SRS
(6.7% and 2.7%, respectively). This indicates that business-
level value exchanges were more frequently left unprotected or
unlinked to security controls, likely due to the abstraction level
of the VM and a lack of explicit mapping guidelines during
parallel development, while the development of SRs actually
takes the initial UML data model as one of the references.
In contrast, the DM–SRs view shows a higher inconsistency
rate (6.2% vs. 2.5% ), suggesting that more semantic mis-
matches occurred between structured data elements and the
corresponding security requirements. Redundancy remained
low in both views (<3%), indicating that duplicated security
concerns were relatively rare.

In terms of severity, the average issue severity for
VM–SRs reached 2.5 (Moderate–High), compared to 1.9
(Low–Moderate) for DM–SRs. This further reinforces that
traceability issues related to value modeling had a greater po-



Relation (edge)
class

Domain → Range Description Property type

tracedFrom VT Security Req. → Value Transaction SRs protects certain value transactions. supports, authorizes, constrains
tracedFrom EA Security Req. → Economic Actor SRs protect the interests of the actor. protects, constrains, enforces compliance
tracedFrom DA Security Req. → Data Asset Valuable data info needs to be protected. protects, encrypts, authorizes access
tracedFrom DR Security Req. → Data Record System record/experiment data to be protected. audits, validates, restricts scope
tracedFrom DO Security Req. → Data Owner/User Protect the interests of the actor. authenticates, enforces, grants consent

TABLE III
RELATION (EDGE) CLASS DESIGN

NodeID Class type Label

VT 1 Value Transaction PayLicenseFee
EA 1 Economic Actor Venues
DA 1 Data Asset Claim
DR 1 Data Record Monitor
DO 1 Data Owner/User CMO
SR 2 Security Req. Data custody & Data availability scope

TABLE IV
KG NODE INSTANTIATION (EXAMPLES)

tential impact, particularly due to overlooked actors (e.g., pol-
icymakers, service providers) and untraced value transactions
involving sensitive or contractual exchanges. These results
suggest that the concurrent development of value models and
operational security requirements requires additional support
mechanisms, such as traceability templates, shared semantic
terms, or structured review checkpoints to ensure alignment.

D. Discussion of traceability problems

We discuss a selection of issues found while analyzing
traceability between the VM and SRs, and DM and SRs
respectively.

1) Lack of cross-artefact semantic alignment: Key con-
cepts or stakeholder labels were inconsistently defined
or interpreted across artefacts, leading to omissions or
mismatches. For example, the term ‘access to X data’
in VM can be related to ‘data management’, ‘autho-
rization’, ‘data made available to’ or ‘data access’ in
SRS. Also, ‘Creatives’ in SRs is expressed by ‘CMO
members’ in VM and ”Rightholders” in DM. It will lead
to ambiguous and possibly redundant results.

2) Absence of value consideration: Due to the CSRE
process, security requirements were not systematically
derived from the value transaction processes, leaving
critical controls unaddressed, e.g., payment process and
the track recognition process.

3) Insufficient stakeholder involvement: Some key stake-
holders (e.g., policymakers, third-party vendors) were
almost excluded from model design and requirement
elicitation and validation workshops. It causes gaps in
actor coverage and value transaction path design in
the value model. Also, the corresponding security re-

quirements and practical constraints cannot be reflected
clearly due to the lack of domain expertise.

4) Inherent characteristics of VM, DM and SRs: The
value model emphasizes monetary exchanges and thus
overlooks ecosystem activities important to policymak-
ers. The security requirements were derived from high-
level goals, general IT architecture, and data-owner
needs, rather than specific model elements. Meanwhile,
the data model captures broad entity structures but omits
many detailed attributes and operations. As a result,
some generic SRS items and security measures cannot
be precisely or fully traced back to either the value or
data models.

5) Lack of structured SRs: SRs definers overlooked non-
functional data protections (e.g., encryption for DR 3
Statements) due to lack of structured checklists. Some
SRs expressions are broad and ambiguous, lacking a
clearly defined applied scope/scenario.

VII. DISCUSSION

A. Recommendations for concurrent requirement engineering

1) Integrated workshops: Co-design VM/DM/SRs
with cross-functional teams (business value, security,
database design).

2) Semantic registries: Define shared terms (e.g., ‘access
to X data’ in VM = ‘authorization (JWT) + the scope
of data access’ in SRs).

3) Clarified security scope The security requirement items
should clearly state the protection scope, e.g., which
data/value/activities are related to.

4) Normalized data model design: Security requirements
usually protect various classes (elements) in the data
model. Class attributes or method can help identidy the
types of corresponding security requirements to a certain
extent and help with traceability analysis. Therefore, the
development of data models can be more standardized
and enhance integrity.

5) Extend model design scope: Extend models to cover
edge scenarios in cases (e.g., add third-party service
integrations as a new value transaction path in VM).

B. Evaluation of effectiveness

We evaluated the effectiveness of concurrent software &
requirements engineering (CSRE) by analyzing traceability



Viewpoints % Inconsistency % Incompleteness % Redundancy % SRs missing Avg. Severity

VM–SRs 2.5% (4/165) 12.7% (21/165) 2.5% (4/165) 11.5% (19/165) 2.5 (Moderate–High)
DM–SRs 6.2% (11/179) 6.7% (12/179) 2.2% (4/179) 2.7% (5/179) 1.9 (Low-Moderate)

TABLE V
TRACEABILITY PROBLEM STATISTICS RESULT OF MUSIC360 ARTEFACTS

Item Description & Validation

RulePattern 2 Each AccessControl Req. related SRs node should link at least two types of nodes in DM: the Data User empowered/affected and
the data asset/record.

Validation
MATCH (sr:SecurityRequirement type: ‘AccessControl’)
WHERE COUNT(sr)-[:tracedFrom DO]− >() = 0 OR COUNT(sr)-[:tracedFrom DA|tracedFrom DR]− >() = 0
RETURN sr.id AS IncompleteAccessControlReq;

RulePattern 3 If the data asset/data record nodes or value objects in value transfer nodes are sensitive information, they should at least be traced
to two types of SRs nodes: confidentiality Req. related and AccessControl Req. related.

Validation
MATCH (da:DataAsset sensitivity: ’high’)
WITH da, COUNT(da)< −[:tracedFrom DA]-(sr:SecurityRequirement) AS srCount WHERE srCount < 2
RETURN da.id AS UnderprotectedData;

RulePattern 5 If the SRs node requires ”log/record” (Transparency Req. related), there should be a corresponding data record node in DM.

Validation
MATCH (sr:SecurityRequirement)
WHERE sr.description CONTAINS ‘log’ OR sr.description CONTAINS ‘audit’ AND NOT EXISTS(sr)-[:tracedFrom DR]− >()
RETURN sr.id AS UnloggedRequirement;

TABLE VI
RULE PATTERNS FOR TRACEABILITY KNOWLEDGE GRAPH

problems identified across independently developed artifacts.
Through knowledge-graph–based analysis approach, we sys-
tematically detected traceability gaps between the value model,
data model, and security requirement items. Specifically, we
identified problems in four dimensions: inconsistencies, in-
completeness (model-side), redundancy across requirements,
and entirely missing SR items. These issues were not marginal:
for example, several critical data assets and value transactions
lacked corresponding security requirements, while some SR
items were either unlinked or semantically duplicated. Our
findings indicate that, although CSRE accelerates develop-
ment by enabling parallel modeling, it increases the risk of
misalignment when traceability is not explicitly managed.
The presence of trace gaps highlights a lack of coordination
or shared semantic understanding across modeling teams.
These problems could be addressed by introducing structured
traceability support during CSRE, such as shared modeling
guidelines, intermediate checkpoints for cross-artifact reviews,
and trace consistency rules. In this context, the traceability
analysis not only reveals weaknesses in artifact alignment but
also guides targeted refinements and coordination strategies
within concurrent development workflows.

C. Limitations

Our study has three main limitations:
• Manual verification subjectivity: manual inspection of

trace links and severity scoring may introduce researcher
bias, affecting reproducibility.

• Single-case generalizability: the approach was evaluated
on a single DBE (MUSIC360), so its applicability to other
domains remains to be validated.

• Granularity gaps across viewpoints: Value models
can be abstract, and data models may omit operational
attributes, which limits precise mapping to the SRS scope.
We plan to introduce “bridge” elements (e.g., value-object
classifiers, data-asset sensitivity annotations) and enforce
them via KG completeness rules.

D. Future work: rule pattern in traceability analysis

To improve traceability quality, we propose defining a set
of rule patterns for the knowledge graph to help detect hidden
logic issues, such as the Inheritance relationship or actual
constraint. In future work, we plan to integrate a reasoning
engine that can automatically check these patterns and infer
implicit relationships. Each SR item can be tagged with a
type (e.g., confidentiality, access control, transparency), which
helps reasoning tools relate them to relevant system activities.
Examples of such rule patterns are shown in Table VI.

VIII. CONCLUSION

This paper has investigated the effectiveness of concur-
rent software & requirements engineering (CSRE) through
a traceability analysis of three key artefacts (value model,
data model, and security requirement items) developed in
parallel within the MUSIC360 digital business ecosystem.
By applying a knowledge–graph–based traceability approach,
we uncovered a range of issues, including inconsistencies
between model semantics and requirements, incompleteness
in the coverage of data and value elements, redundancy in
requirement statements, and missing SR items. These findings
suggest that while CSRE allows for accelerated and distributed
artefact development, it also introduces a significant risk



of traceability misalignment if cross-model coordination is
not systematically supported. Our analysis reveals that many
traceability problems stem from ununited semantics, insuffi-
cient stakeholder involvement, or the inherent characteristics
of each artefacts. To address these challenges, we propose
practical recommendations such as introducing lightweight
traceability rule patterns, using shared semantics terms, and
holding integrated workshops within cross-functional teams.
Ultimately, our findings indicate that although CSRE can be
effective, its success depends heavily on traceability manage-
ment mechanisms that ensure artefacts remain semantically
and logically aligned. This study thus highlights the impor-
tance of embedding traceability analysis into the concurrent
engineering process, not merely as a ex-post check, but as an
integral activity that guides coordination and quality assurance.
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[14] Q. Ramadan, M. Salnitriy, D. Strüber, J. Jürjens, and P. Giorgini, “From
secure business process modeling to design-level security verification,”
in 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2017, pp.
123–133.

[15] J. D. Blackburn, G. Hoedemaker, and L. N. Van Wassenhove, “Concur-
rent software engineering: prospects and pitfalls,” IEEE Transactions on
engineering management, vol. 43, no. 2, pp. 179–188, 1996.

[16] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, and G. Kappel,
“Concurrent modeling in early phases of the software development life
cycle,” in International Conference on Collaboration and Technology.
Springer, 2010, pp. 129–144.

[17] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

[18] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile soft-
ware development methods: Review and analysis,” arXiv preprint
arXiv:1709.08439, 2017.

[19] O. C. Gotel and C. Finkelstein, “An analysis of the requirements
traceability problem,” in Proceedings of ieee international conference
on requirements engineering. IEEE, 1994, pp. 94–101.

[20] J. Cleland-Huang, O. C. Gotel, J. Huffman Hayes, P. Mäder, and
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